Analysis I - Semestral examination B.Math. Hons. Ist year First semester 2007-08 Instructor — B.Sury Maximum marks 100

Q 1.

Let $A \subseteq \mathbf{R}$ be a closed set. Suppose $\{a_n\}$ is a sequence with infinitely many elements in A. If $\{a_n\}$ converges to a real number a, prove that $a \in A$.

OR

Prove that a compact subset of **R** must be closed and bounded.

Q 2.

- (i) Prove that the sequence $\{\sin(n)\}$ is not convergent.
- (ii) Prove that for any 0 < t < 1, we have $\lim_{n \to \infty} nt^n = 0$.

OR

Let $\{a_n\}$ be a bounded sequence and let a be a real number such that each subsequence of $\{a_n\}$ which is convergent, converges to a. Show that $\{a_n\}$ itself must converge to a.

Q 3.

- (i) For $\alpha > 0$, determine if the series $\sum_{n \ge 2} \frac{1}{n(\log n)^{\alpha}}$ converges.
- (ii) Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ is conditionally convergent.

\mathbf{OR}

Let σ be a permutation of the natural numbers such that $|\sigma(n) - n| \leq 100$ for all n. If $\sum_{n} a_n$ is a convergent series, prove that $\sum_{n} a_{\sigma(n)}$ also converges.

Q 4.

Prove that a real-valued continuous function defined on a closed, bounded interval attains its infimum and supremum on it.

OR

Let $I \subset [0,1]$ be a subset such that whenever a < b belong to I, the open interval $(a,b) \subset I$. Prove that I must be an interval. P.T.O.

Q 5.

Let $f(x) = x^2 \sin(1/x)$ if $x \neq 0$ and f(0) = 0. Prove that f'(0) = 0 but that $\lim_{x\to 0} f'(x)$ does not exist.

OR

Let $g(x) = |x|^3$. Compute g'(x), g''(x) by first principles and show that $g^{(3)}(0)$ does not exist.

Q 6.

Suppose $f, g : [a, b] \to \mathbf{R}$ are continuous functions which are differentiable on (a, b). If $f'(x) = g'(x) \forall x \in (a, b)$, show that f - g is a constant function on [a, b].

OR

Prove that the polynomial $f(x) = (x-1)(x-2)\cdots(x-100) - 1$ can have roots of multiplicity at most 2.

Q 7.

Prove that if f is a uniformly continuous on (0, 1), then f can be defined at 0 and at 1 such that f is continuous at 0 and at 1.

Q 8.

Let $f : [a, b] \to \mathbf{R}$ be a continuous function which is differentiable on (a, b). Suppose that $a \leq f(x) \leq b$ for all $x \in [a, b]$ and that $f'(x) \leq \alpha < 1$ for all $x \in (a, b)$. Show that there exists a unique $c \in (a, b)$ such that f(c) = c.

Q 9.

Use L'Hospital's rule to evaluate : (i) $\lim_{x\to 0+} \frac{\log(\sin x)}{\log(x)}$; (ii) $\lim_{x\to 0+} \frac{\sin x}{\sqrt{x}}$; (iii) $\lim_{x\to 1+} \frac{(x^{n-1})(x^{n}-x)\cdots(x^{n}-x^{n-1})}{(x^{r}-1)(x^{n-r}-1)(x^{n-r}-x)\cdots(x^{n-r}-x^{n-r-1})}$ for n > r > 0.